PROCESS SAFETY

Overview of the research activities and theses

Prof. Ing. Gabriele Landucci

Associate professor of chemical engineering Department of Civil and Industrial Engineering Largo Lucio Lazzarino, 1, 56126, Pisa, Italy Tel. +39-0502217907; e-mail: gabriele.landucci@unipi.it

Research group members Dr. Federica Ovidi Mr. Lorenzo Rossi

Introduction to process safety

Process safety is defined* as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release

MAJOR ACCIDENTS: FIRES, EXPLOSION, TOXIC DISPERSIONS

* https://www.journals.elsevier.com/journal-of-loss-prevention-in-the-process-industries

The bow-tie approach to cascading events

Secondary Events

Unintentional threats due to Target failure *Process upsets, human error, transport incidents* Cause 1 Fire Loss of containment **Explosion** Cause 2 Spill of chemicals Cause n **Toxic Disp.** Prevention Mitigation

The bow-tie approach to cascading events

The bow-tie approach to cascading events

France attack: Man decapitated at factory
near Lyon© 26 June 2015 | EuropeControl 2015 | EuropeContr

Tank fire at LyondellBasell refinery, near Marseille

Theme 1: risk assessment of industrial scenarios

Food industry???

Contact person: Dr. Federica Ovidi

Example: risk assessment of LNG ships access to Venice harbour area

Theme 1.1: Risk Matrix

Risk assessment

- 1. Characterisation of the system
- 2. Identification of hazards
- 3. Frequency evaluation
- 4. Consequence evaluation

, `					
Node 01	Diameter	Invento	Inventory		
Liquid piping	10 mm	Line Vo	olume		
system	3"	Line Vo	olume		
Node 02	Diamete	Duration			
	r	Mitigated	Unmit.		
Boil Off Gas piping	10 mm	1 min	30 min		
	3"	1 min	30 min		

Application to **transport systems**

Theme 1.1: Risk Matrix

Application to **transport systems**

Risk assessment

- 1. Characterisation of the system
- 2. Identification of hazards
- 3. Frequency evaluation
- 4. Consequence evaluation

5. Risk recomposition

Likelihood (F)	Qualitative Rating
f _i < 10 ⁻⁶ y ⁻¹	Practically non-credible
$10^{-6} \le f_i < 10^{-4} \text{ y}^{-1}$	Rare
$10^{4} \leq f_i < 10^{3} y^{1}$	Unlikely
$10^{-3} \le f_i < 10^{-1} y^{-1}$	Credible
$10^{-1} \le f_i < 1 \ y^{-1}$	Probable
$f_i \ge 1 y^{-1}$	Likely/Frequent

Severity (M)	Qualitative Rating
r _{vul} < 1 m	Slight effect
$1 \text{ m} \le r_{vul} < d_N$	Effects internal
$\mathbf{d}_{\mathrm{N}} \leq \mathbf{r}_{\mathrm{vul}} < \mathbf{d}_{\mathrm{U}}$	Effects external
$\mathbf{d}_{\mathrm{U}} \leq \mathbf{r}_{\mathrm{vul}} < \mathbf{d}_{\mathrm{P}}$	Damages to units
$\mathbf{r}_{vul} \ge \mathbf{d}_{P}$	Multiple fatalities

Risk register

Source	ID	Scenario	F	С	R
Liquid piping system	01	VCE	1	5	М
BOG piping	02	Jet Fire	2	2	L
Steam piping manifold	03	Flash Fire	1	3	L
Liquid piping system	04	Jet Fire	1	4	M

Risk matrix

Buffer zone

CHEMICAL CARRIERS?

Theme 1.2: Graph Theory

Application to **transport systems**

Risk assessment

- 1. Characterisation of the system
- 2. Identification of hazards
- 3. Frequency evaluation
- 4. Consequence evaluation

5. Risk recomposition

A

Nodes	Transportation systemOther industrial plants
	• Populated areas

cs	Physical consequences following an
	accidental scenario:
	Heat radiation

- Overpressure
- Toxic concentration

Theme 1.2: Graph Theory

Risk assessment

- Characterisation of the system 1.
- Identification of hazards 2.
- Frequency evaluation 3.
- Consequence evaluation 4

5. Risk recomposition

CLOSENESS $C_{C-out}(i) = \frac{1}{\sum_{i} d_{ii}}$

measures the node centrality and relies on the length of the paths from a node to all other nodes

BETWEENNESS
$$C_B(i) = \sum_{j,k} \frac{d_{j,k}(i)}{d_{j,k}}$$

Identifies the shortest path between two nodes and measures the number of paths that passes through a node

Theme 1.3: Agent based modelling & Bayesian networks

Application to *fixed installations*

Elements in **Domino Event**:

- 1. a primary accidental scenario
- 2. an escalation vector,
- 3. at least, a secondary scenario

Safety barriers:

"physical and/or non-physical means planned to prevent, control, or mitigate undesired events or accidents"

Agent based modelling

Bayesian networks

Theme 1.3: Agent based modelling & Bayesian networks

Application to *fixed installations*

Elements in **Domino Event**:

- 1. a primary accidental scenario
- 2. an escalation vector,
- 3. at least, a secondary scenario

Safety barriers:

"physical and/or non-physical means planned to prevent, control, or mitigate undesired events or accidents"

Agent based modelling

Bayesian networks

Theme 1.3: Agent based modelling

Application to *fixed installations*

1. Equipment

Type of Tank	ttf correlations
Atmospheric	$\ln(ttf) = -1.13 \ln(Q) - 2.67 \times 10^{-5} V + 9.9 (1)$
Pressurized	$\ln(ttf) = -0.95 \ln(Q) + 8.85 V^{0.032} (2)$

2. Safety barrier

- Availability (PFD): representing the probability of failure on demand (PFD) of the safety barriers;
- Effectiveness (η): representing the probability that the SB, once successfully activated, will be able to effectively prevent/mitigate the escalation.

4. Model

Theme 1.3: Agent based modelling

Application to *fixed installations*

- A base-line case. All tanks are unprotected
- B-atmospheric tanks equipped with FWS
- C –atmospheric tanks equipped with FWS; pressurized tanks equipped with WDS and PFP
- D –atmospheric tanks equipped with FWS; pressurized tanks equipped with WDS and PFP, and EEI is considered

Theme 1: risk assessment of industrial scenarios -> DOMINO EFFECT events simulation

Domino triggered by fire

Domino triggered by explosion and fragments (link with security??)

LUMPED APPROACH DIS'

DISTRIBUTED PARAMETERS APPROACH

Theme 2: Analysis of accidents triggered by natural events (NaTech)

Contact person: Mr. Lorenzo Rossi

Theme 2A: accidents triggered by flooding in industrial plants

Theme 2B: accidents triggered by flooding in large battery units \rightarrow electrolysis and gas development

Co-supervisor: Dr. Antonio Bertei

Theme 2: Analysis of accidents triggered by natural events (NaTech)

Technological accidents triggered by natural events — <u>NaTech</u>

Tsunami (Japan, 2011)

Theme 2: Analysis of accidents triggered by natural events (NaTech) authorities have adequate knowledge on the

Due to climate changes, in recent years an increment in natural disasters can be observed and there is an higher awareness in competent authorities for this emerging issue. (Krausmann E. Analysis of Natech risk reduction in EU Member States using a questionnaire survey. 2010)

Competent authorities have adequate knowledge on the dynamics of Natech accidents (8f)	3	5		5		
Risk managers/safety professional in industry are aware of Natech risk (8b)	6	;	4	3		
There is enough emphasis on Natech risk reduction in regulations on chemical-accident prevention (8e)	6	5	2	5		
Competent authorities have adequate training on Natech risk reduction (8g)	6	3	4	3		
Natechs are discussed among those in charge of chemical- accident prevention (8c)		7		4	2	Agree
Current industry risk assessment methods adequately take into account Natech events (8i)		7		6		Neutral Disagree
Current building codes provide protection against Natech events (8j)		8		2 3		
Current practices for chemical-accident prevention provide adequate protection against Natech accidents (8h)		8		3	2	
Natechs are discussed among those in charge of natural- disaster management (8d)		9		3	1	
I was aware of the concept of Natech risk (8a)		1	12		1	
-	0 2	4	6 8	10	12 14	
Replies received						

Natural events are very dangerous for chemical plants in particular because of the dangerous materials involved. A loss of containment can lead to very harsh consequences (fires, explosions, toxic dispersions, contamination), involving large areas and having huge effects on the surrounding population.

Theme 2: Analysis of accidents triggered by natural events (NaTech)

Main activities on this topic:

- Development of fragility models for critical industrial equipment;
- Accident scenarios simulations;
- Development of risk assessment methodologies;
- Analysis of emergency measures and development of suitable mitigation and prevention actions.

Theme 3: Security assessment

20

Theme 3: Security assessment (terrorist attacks)

Evaluation of the vulnerability of a chemical facility

Target E.I.1.

Attack carried out by a terrorist acting alone. Attack mode: use of IED

Two alternative terrorist's paths are analysed.

Theme 4: Low phi-factor adiabatic calorimeter (PHI-TECH2)

OPERATING RANGE

Temperature: $25 - 400 \ ^{\circ}C$ Pressure: $0 - 137 \ ^{\circ}Dar$

Exotherm detection sensitivity:

0.02 °C/min

Tracking capability:

up to 200 °C/min

Pressure compensation system: up to 100 bar/min

OPERATING MODES:

- Heat Wait Search
- Closed can test
- Open cell test

Lauroyl Peroxide (LPO) Decomposition

Theme 5: Consequence and risk assessment – dynamic process simulators

- Set up of dynamic process simulator to analyze the consequence of <u>JET-FIRE</u> following the leak of flammable materials (Ref. Prof. Pannocchia)
- Specific template developed in UniSim®: calculation spreadsheets embedded in the process simulator

Partners and internships:

University of Leiden (the Nethelands)

University of Bologna, (Italy)

Delft TU Delft (the Netherlands)

京都大学防災研究所 Disaster Prevention Research Institute, Kyoto University - Joint Usage/Collaborative Research Center for Multidisciplinary Disaster Prevention Study-

Crisisplan (the Netherlands)

Cascading events triggered by external acts of interference or natural events (NaTech)

UN MARE DI QUALITÀ

CHEMICAL

Queen's University (Canada)

University of Bologna, (Italy)

Universitat Politècnica de Catalunya (Spain)

Alès

Ecole de Mines Alès (France)

Safety and risk assessment of *chemical plants*

Industrial partners